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synopsis 
When the Rouse distribution of relaxation times is inserted into Pm’s constitutive 

equation as expressed by Huseby and Blyler, a simple two-parameter model results. 
The parameters can be fitted using the limiting values of viscosity and modulus at low 
shear rates. The modulus in this case is defined as the ratio of shear stress during steady 
flow to the recovered shear during creep recovery with the stress removed. The mathe- 
matical model, is then used to predict the behavior a t  high shear rates where flow is 
pseudoplastic and elasticity is non-Hookean. A sample of polyisobutylene and several 
high molecular weight poly(dimethylsiloxanes) can be fitted reasonably well. Silicones of 
lower molecular weight (3.7 and 5.5 X 106) are not correlated successfully, perhaps be- 
cause not all the “recoverable shear” stored during flow can actually be recovered experi- 
mentally. The Rouse distribution can be generalized for added flexibility. 

INTRODUCTION 

In 1957, Pao’ introduced a constitutive equation which described the 
flow and deformation of pseudoplastic materials in terms of a distribution 
of relaxation times. Cox and Merz,z the next year, used the Pao model 
with a simple distribution to look at non-Newtonian flow of polymer melts. 
The distribution, introduced by Rouse3 in 1953, characterizes the entire 
distribution by a single modulus and a maximum relaxation time. In 
theory, the number of elements used (each of which is related to the two 
parameters of modulus and maximum relaxation time) should be a func- 
tion of molecular weight. The higher the molecular weight, the larger 
number of elements are used. Huseby and Blyler4 have used the Pao 
equation to correlate and predict rheological properties of polymer melts. 
Since the equation is in a form which requires a distribution of relaxation 
times, it has been used to fit experimental data. The equation thus fitted 
has then been used to predict the behavior in another kind of experiment. 

* Presented a t  the Meeting of the ACS Division of Polymer Chemistry, Minneapolis, 
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For example, a distribution obtained from stress relaxation experiments 
can be used to predict non-Newtonian viscous flow. 

It is the purpose of the present work to show that a much simpler 
modification can be used if the objective is to fit data with only a limited 
penetration into the non-Newtonian flow and non-Hookean elastic egions. 
The Rouse distribution has been used with the Pao equation before2 in 
dealing with non-Newtonian flow. Since the Rouse distribution reduces 
the total number of parameters that can be fitted to two, it is obviously 
incapable of reproducing the many different shaped flow curves that even 
one polymer species may produce as a function of molecular weight dis- 
tribution or branching. 

PA0 EQUATION 

The general constitutive equahion of Pao has been cast into the following 
forms by Huseby and Blyler4 for laminar shearing flows involving shear 
stress 712, first normal stress difference P 1 1  - P 2 2 ,  and recoverable shear 
strain s as a function of shear rate y : 

The set of quantities (Gp, 0,) represents the distribution of relaxation 
times, and x and y are dummy parameters; G, has the units of a shear 
modulus and e,, units of time. The parameter r](?;)  is the ordinary vis- 
cosity which we expect to approach a constant value at low shear rates 
for most polymer melts and solutions; G(9) is a shear modulus defined in 
terms of a recoverable shear strain s. It should be pointed out, since a 
recovered shear strain, y,, will be used later on, that the recoverable shear 
s is a measure of the energy actually stored in the fluid under steady flow 
conditions. Recovery can be, in itself, a dissipative process, so that it is 
conceivable that yr will be smaller than s. There is no reason to think 
that y, should ever exceed s. 
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ROUSE DISTRIBUTION 

A simple mathematical model for Gp(Op) due to Rouse3 has been used to 
approximate portions of stress relaxation behavior of real polymers. The 
model specifies 

G, = G ,  (a constant) (9) 

e, = OR/p2 p = 1,2, 3 . .  .infinity (10) 

where OR is the maximum observed relaxation time for a system. There 
are an infinite number of shorter relaxation times, each related to OR by 
eq. (10). Insertion of the Rouse distribution into eqs. (7) and (8) for 
x and y leads to 

m 

The three observable phenomena, eq. (1) through (3), now are completely 
described in terms of only two parameters, G, and OR.  

One might question the applicability of the Rouse distribution where 
bulk polymer behavior is to be treated, since the model was originally 
derived for infinitely dilute polymer solutions. However, as Tobolsky6 
has pointed out, theoretical considerations allow the use of the model 
for undiluted amorphous polymers merely by using a different minimum 
relaxation time. Both Tobolsky and Cox and Merz2 have used the Rouse 
distribution for undiluted systems with some success. 

LOW-SHEAR BEHAVIOR 

In order to test the usefulness of this relationship, we can examine first 
the behavior of viscosity and modulus at very low shear rates. As 9 ap- 
proaches zero, experience has shown that, for most polymer solutions 
and melts, ~ ( 9 )  approaches a steady value, ~ ( 0 ) ~  the “zero shear” or 
“lower Newtonian limiting” viscosity. Work by severttl groupss#’ in- 
dicates a similar “zero shear” modulus for polymer melts, G(0). Substitut- 
ing eqs. (11) and (12) into eqs. (l), (3), (4), and (6), and letting 9 approach 
zero, we have: 

m 4 )  

OR = 0.760 s(O)/G(O) 

G B  = 0.805G(O) 
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where Zl/p4 = 1.0823 and Zl/p2 = 1.6449, being pure numbers.8 Thus, 
from two relatively accessible experimental numbers, ~ ( 0 )  and G(O), we 
should be able to project the behavior of T ( + ) ,  G(+), andf(+) into the non- 
linear regions as well as to predict the low-shear value off(+). 

Now we can put the experimentally observable quantities stress 712, 

shear strain s, and rate of shear + in dimensionless form: 

Fig. 2. I)imensionless plot of recovered shear strain Y R  vs. rate of shear for six polymers 
and for the Pao-Rouse model (continuous line). x : Polyisobutylene; 0 :  Whole sili- 
cone; 0: Fraction F-1; A: Fraction F-2; 0: Fraction F-3; b: Fraction F-4. 

Fig. 1. Dimensionless flow curve, stress vs. rate of shear, for six polymers and for the 
Pao-Rouse model (continuous line). x : Polyisobutylene; 0:  Whole silicone; 0: 
Fraction F-1; A: Fraction F-2; 0 :  Fraction F-3; b: Fraction F-4. 
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The right-hand sides of these equations are functions of OR only. The 
behavior of s and m / G ( O )  is shown as continuous lines in dimensionless 
plots (Fig. 1 and 2 ) .  G ( 0 )  is used in place of G R  since it is directly observ- 
able and proportional to G R ,  eq. (16). The recoverable shear strain starts 
to deviate from linearity at about OR?; = l / z ,  whereas the viscosity does 
not decrease noticeably until OR+ = 1. The strain rapidly approaches an 
asymptotic value of 2, while the reduced stress, n z / G ( O ) ,  becomes ap- 
proximately equal to 2.68 That is, for OR greater than 10, flow is 
representable by a “power law” with a slope of I/z. This is a consequence 
of the behavior of the summation in eq. (18). That summation can be 
approximated by an integration when OR+ exceeds 10 to give 

CORRELATION OF EXPERIMENTAL DATA 

Creep and recovered shear were reported on fractions of poly(dimethy1- 
siloxanes) and a polyisobutylene in a previous paper.’ From the values 
of ~ ( 0 )  and G ( O ) ,  we can calculate the parameter OR for each sample (Table 
I). The plots on reduced coordinates are shown in Figures 1 and 2. It 

TABLE I 
Rheological Parameters for Polymers Testeda 

do),  G(O), dynes/ 8R1 
poise X lo4 cme x 10-4 secb 

Polyisobutylene (Vistanex) 80 7.0 8.7 
Whole polymer 25 1.2 16 

1600 0.8 1520 
87 1.9 35 
12.5 3.5 2.7 

Fraction F-1 
Fraction F-2 
Fraction F-3 
Fraction F-4 

silicones 

3.1 6.6 0.36 

a From Fruh and Rodriguez.7 
b Equation (15). 

is to be expected that the simple Pao-Rouse model, fitted without any 
reference t o  the nonlinear portion of the experimental data, can give only 
a qualitative prediction of the nonlinear behavior. The recovered strains 
for the fractions F-3 and F-4 deviate markedly from the prediction at 
high rates of shear. Perhaps in the case of these lower molecular weight 
polymers, the approximation that Y~ = s becomes less valid, and dissipa- 
tion of stored energy during recovery is appreciable. The unequivocal 
Hookean behavior of higher molecular weight silicones and the polyiso- 
butylene argues that dissipation either is a very small effect at lower shear 
stresses, or that it is a linear function of stress for high molecular weight 
and not linear for low molecular weights. Since the correlation looks 
poorest for the low molecular weights, the possibility arises of using a 
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Fig. 3. Dimensionless stress and recovered strain vs. rate of shear for the Pao-Rouse 
In these plots, 1000 elements give the model with a restricted number of elements. 

same result as an infinite number. (Key to symbols same as in Figs. 1 and 2.) 

finite number of elements rather than the infinite number used in the Rouse 
distribution in Figures 1 and 2. 

Using only one element gives an anomalous increase in viscosity with 
rate of shear (Fig. 3). In the range of shear rates used here, there is no 
distinction visible between loo0 elements and an infinite numbe . By 
superimposing the flow data there seems to be no advantage in going to a 
finite number of elements. 

Using a finite number of elements for the strain, the asymptotic value 
of shear strain at high rates of shear disappears (Fig. 3). As can be seen 
when the data are compared with the curves, the use of fewer elements 
predicts a change to higher recoverable shear strains which is in the op- 
posite direction from the experimental results with lower molecular 
weights. 

GENERALIZED DISTRIBUTIONS 

In using an equation somewhat similar in form to the Pao equation, 
Bird and Carreaus have included as a variable the exponent on the pa- 
rameter p of the Rouse distribution. The significance of n is that when n 
is less than 2, the elements of the distribution are closer together, and when 
n is greater than 2, the elements are further apart. Once again we might 
consider the spacing of the elements to be subject to variation with molec- 
ular weight. We are limited to exponents greater than 1 because, when 
the exponent becomes equal to or less than 1, the summations to infinit,y 
become infinite themselves. Now we replace eq. (10) by eq. (20): 

Or’ = eR’.!(p)n p = 1, 2,  3 . .  .infinity (20) 
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It is convenient to compare the results when n = 1.25,2, and 4 on reduced 
coordinates such that s and m / G ( O )  remain the same. The test of the 
constants embodying the summations of reciprocal powers of p are lumped 
together in the coefficient C which multiplies the rate of shear. 

The effect of changing the exponent is rather slight in the case of the 
flow curve (Fig. 4). When n = 4, there occurs the same increase in vis- 

Fig. 4. Perturbing the Rouse distribution by increasing the exponent on the index 
for the relaxation time to 4 introduces distortions in stress and recovered strain plots. 
Decreasing the exponent to 1.25 makes the flow curve more Newtonian. Curves are 
shifted by the lumped constant C. 

Fig. 5 .  Introducing a variable modulus term in the Rouse distribution makes the 
flow curve more Newtonian arid decreases the asymptotic value of recovered shear 
strain at high rates of shear. Curves are shifted by the lumped constant C.  
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cosity with shear rate that was seen with one element. With the recover- 
able strain, the change in exponent gives a more well-ordered change in 
pattern. However, when n = 4, there is a predicted maximum in the 
strain. If w0 postulate that a lower molecular weight should have ele- 
ments spaced further apart, that is, that n should be greater than 2, then 
the results are in the wrong direction since the lower molecular weights 
lie below the n = 2 line. 

A second method of perturbing the Rouse model is to put in a variable 
modulus, so that eq. (9) is replaced by 

G,‘ = G,‘~”  p = 1, 2, 3 .  . .infinity 

where GR’ is a constant as before. This corresponds to the physical situa- 
tion when stress relaxation data are fitted by a series of Maxwell elements 
(Tobolsky’s “procedure X’l).lo It is usual to find that moduli of 
successive elements are greater as the relaxation times become shorter, 
realistic bonds are 0 < m < 1. Negative values of m give a large increase 
in viscosity over the Newtonian value at the transition between Newtonian 
and power law behavior. When m = 1, the summations become infinite 
themselves. Exponents of m = 0.25 and m = 0.50 do indeed change the 
recoverable shear in a manner which might lead to a better fit (Fig. 5). 
However, the flow curve is changed in the direction of more Newtonian 
behavior, as was the case when n = 1.25 (Fig. 5). The conclusion is that 
simple modifications of the Rouse model do not improve it appreciably. 
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